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Twisting of liquid crystals 
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The Johns Hopkins University, Baltimore, Maryland 

(Received 8 March 1966) 

We discuss a one-parameter family of general solutions of the hydrostatic 
equations for liquid crystals. For certain values of the parameter, the energy 
may take on extremal values. We discuss special features of such solutions. Con- 
figurations similar to those considered naturally occur in liquid crystals of 
cholesteric type, suggesting that some such state has a relatively low energy. 

1. Introduction 
Generally, liquid crystal molecules are large and relatively rigid, one dimension 

being large compared with the others. In  the phases to be considered, the 
molecules tend to be parallel to their neighbours, being relatively free to move 
so as to maintain the parallelism. Many unusual phenomena observed in them 
are discussed by Brown & Shaw (1957). Continuum theories of these involve 
a vector field h(x); loosely, the direction of the molecular axis. We assume, as is 
customary, that the length of h is invariable, 

h . h  = 1, (1.1) 

and that these liquids are incompressible. We consider the hydrostatic theory, 
as presented by Ericksen (1962a). We exclude the so-called smectic state, for 
which the equations to be used are inappropriate. The theory involves a stored 
energy function W, interpretable as Helmholtz free energy per unit volume, of 
the form 

It is subject to the condition that it be unaffected by rigidly rotating the material. 
Formally, 

where R is any rotation matrix, 

W = W(h, Vh). (1.2) 

(1.3) 

R-1 = RT, det R = 1. (1-4) 

W(Rh, RVhRT) = W(h, Vh), 

As is discussed by Ericksen (1961), this implies that 

Further, derivatives of W with respect to its arguments transform as tensors of 
obvious type. For liquid crystals of nematic or cholesteric type, as defined, for 
example, by Frank (1958), h is physically indistinguishable from - h, so 

W(h,Vh) = W(-h, -Oh). (1.6) 
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Liquid crystals of nematic type are further distinguished by the fact that (1.4) 
can be replaced by 

these consisting of molecules which are symmetric with reflexions in planes 
parallel and perpendicular to h, or of racemic mixtures of asymmetric molecules. 
Possibly because of physical considerations mentioned by Frank (1958), the 
mathematical theory of cases consistent with (1.6) has received most attention. 

R-l = RT, detR = 1, (1 .7)  

In  terms of W ,  the stress tensor t, generally asymmetric, is given by 

where 

and p is an arbitrary pressure. It can be considered as a Lagrangian multiplier, 
introduced because of the constraint of incompressibility. 

As might be expected from the fact that t is asymmetric, there is a couple 
stress tensor 1, given by 

1. = 8.. h.w (1.10) 

Clearly &hi = 0;  (1.11) 

zk vrn 3 mk' 

that is, the couple stress vector acting on any surface is perpendicular to h. 

equations are 
We assume there are no external body forces, in which case the equilibrium 

(1.12) t ik ,k  = 0, 

Wik,k - (a wlahi) = Ahi, (1.13) 

h being an arbitrary scalar, a Lagrangian multiplier corresponding to the con- 
straint (1.1). Here (1.11) can be satisfied by satisfying (1.13) and setting 

p +  W = a = const. (1.14) 

Then (1.1) and (1.13) yield four equations in the four unknowns h and A. 
As is mentioned by Ericksen (1962 b) ,  it  is straightforward to obtain a general 

solution of (1.3)) giving W as an essentially arbitrary function of certain invari- 
ants of h and Vh. Using this, one could, in a straightforward way, verify the 
solution to be presented. We employ a different approach, which seems briefer. 

2. The solution 
What we wish to show is that a field of the form 

h = (cosO,sinO,O), 
0 = bx,+c 

is a solution, b and c being arbitrary constants. The parameter c is of no great 
import, but introducing it facilitates analysis. For analysis, we assume b + 0. 
We still have a solution for b = 0, when h = const. To verify this, it  suffices to 
consider W linear in Vh. Such forms are special cases of the forms considered by 
Frank (1958). 

From (:1.2), W reduces to a function of 

O = bx,+c, 8' = dO/dx, = b. (2.3) 
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Changing c amounts to applying a rotation about the x3-axis, so (1.3) implies 
that W is independent of c .  This is equivalent to saying that it is independent 

W = f ( b )  = const. of 0, so 

Similarly, the scalar 

Thus 

Similarly, awlah,,, = g(b) ,  (2.7) 

this quantity transforming as a scalar under such rotations. By considering 180” 
rotations about the x3-axis, we see that 

8 Wph, = k(h, h’) = k( - h, - h’). 

aW/ah3 = k(h, h’) = - k( - h, - h’). 

(aw/ah3,3)’ = awph,  = 0. 

(2 .8)  

(2.9) 

(2.10) 

On the other hand, 180” rotations about an axis parallel to h’ yield 

From (2.7), (2.8) and (2.9), 

From (2.6) and (2.10), there is some scalar h such that 
aw (g),j-g = (E) -ah, = (2.11) 

the vector on the left being perpendicular to h‘ and the x3-axis, both of which are 
perpendicular to h. This suffices to show that h is a solution. 

It is of interest to determine the forms of the stress and couple stress tensors. 
For simplicity, we henceforth restrict our attention to cases where (1.6) applies, 
so that, generally 

Now (2.13) 

is unaffected if the signs of h and h’ be reversed. Such a change, combined with 
a 180” rotation about the x3-axis, leaves h and h unaltered, but should take 

(2.14) 
v + - V. Thus v(h, h’) = -v(h, h’) = 0. 

By essentially the same argument, 

From (2.13) and (2.15), it  follows easily that 

(2.16) 

For this, the assumption (1.6) is important, as can be seen by considering a W 
proportional to V.  h. 
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By essentially the same argument used to obtain (2.8) and (2.9), we find that 
(2.17) (aW/ah, i) hi = (awjah,,,) hi = 0. 

Turning to (1.5), we find, using (2.10) and (2.16), that 
awjah,, = 0. (2.18) 

Using (1.8), (1.9), (1.14), (2.4), (2.5) and (2.16), we find that the stress tensor is 
given by l o o  I 

t= -p l+  
0 0 -u(b)  
0 0 (2.19) 

where p is an arbitrary constant. Thus, for these solutions, it  is symmetric and 
constant, consisting of a hydrostatic pressure superposed on a uni-axial tension 
or compression in the direction of the x,-axis. 

Now (2.17) and (2.18) imply that, for some choice of a and /?, 
8 Wlah,, = ah;, a Wlah,,, = Phi. 

Using (2.1), ( 2 . 2 )  and (2 .5 )  
u(b) = /?h' . h' = pb2. 

(2.20) 

(2.21) 

Similarly, a, transforming as a scalar under rotations about the x3-axis, depends 
only on b. Using (1.10) to calculate the couple stress tensor, we find that 

(2.22) 

(2.23) 

On the planes x3 = const., the couple stress vector thus is in the direction of the 
x,-axis. It is noteworthy that it,  the twist per unit length b,  and the uni-axial 
stress u(b) ,  are simply related by (2 .22) ,  independent of the form of W .  Intuitively, 
it  seems natural to think of the couple l,, as producing the twist, the accom- 
panying normal stress being loosely similar to that occurring in torsion of non- 
linear elastic or viscoelastic materials. For cylindrical surfaces with generators 
parallel to the x,-axis, the couple stress vector is, as always, perpendicular to h, 
also perpendicular to the x,-axis. It will vanish on planes with h as normal and 
be greatest on planes perpendicular to this. Intuitively, it  would seem that the 
effect of releasing this would be to produce curvature in the planes x, = const. in 
which h lies. 

I bl,, = - ab2 sin2 8 = - a(h;),, 

bl,, = bl,, = ab2 sin 8 cos 8 = - ahih;, 

bl,, = - ab2 cos2 8 = - a(h;)2, 

b,, = I,, = l,, = I,, = 0, 

bl,, = J3b2 = u(b) ,  

or, more briefly, blij = - ah: hi + u ( b )  S,, Sj,. 

By considering special forms of W of the type 
W =f,(h.V x h)+f2(h.V x h)h,,ihj,i, (2.24) 

it  can be seen that a and u can be essentially arbitrary functions of b for liquid 
crystals of cholesteric type. For  liquid crystals of nematic type, x, + - x, is an 
admissible symmetry transformation. It then follows that, for this type, 

(2 .25 )  
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3. Extremal twists 

extremal value, so that 

We call such twists extremal. For liquid crystals of nematic type, (2 .25)  implies 
that b = 0 is extremal. Physically, there is some reason to think that W is then 
a minimum. That is, these seem to occur naturally in configurations where h is 
nearly constant. Within the context of the Oseen-Frank theory, which presumes 
W to be quadratic in Vh, Ericksen (1966) derives corresponding inequalities to 
be satisfied by moduli. Not infrequently, the uniform pattern is marred by 
imperfections, involving lines on which h is undefined, surrounded by regions in 
which h varies rapidly, These are discussed by Prank (1958). 

Liquid crystals of cholesteric type naturally occur in orientation patterns which, 
at least locally, resemble those here described. The value of the naturally occur- 
ring twist seems to be characteristic of a given material, though it is influenced 
by such factors as temperature and concentration of solutions. For various poly- 
peptide solutions, Robinson, Ward & Beevers (1958) report observations in 
which the order of magnitude of b ranges from zero to lo3 cm-I. In  data which 
I have seen for other materials, e.g. those of Can0 & Chatelain (1964), values of 
the order of 105cm-l seem more common. In  the observed patterns, surfaces 
corresponding to the planes x3 = const. sometimes have appreciable curvature. 

At least tentatively, it would seem reasonable to identify the twist with an 
extremal twist for which the energy is a relative minimum. Since the comparison 
is with similarly twisted states alone, this leaves open the possibility that there 
are orientation patterns, not included among the solutions here considered, with 
still lower energy. The problem of settling stability questions of this general type 
is interesting, but beyond the scope of this investigation. 

For analysis of extremal twists, we again assume b + 0. Considering W as 
a function of h and Vh, we have 

The solutions considered are especially simple when b is such as to give W an 

dWldb = 0. (3.1) 

where b ah,/ab = bx,dh,JdO = x3 hi, 

= h;+x,h:. 
Thus (3.1) gives 

= x3 W' = 0. (3.2) 

Thus, for the extremal twists, the stress reduces to a uniform hydrostatic 
pressure and the planes x, = const. are free of couple stress. Whether other 
surfaces are free of couple stress depends on the form of W ,  as can be seen by 
studying special forms of W ,  e.g. those given by (2.24). Intuitively, one might 
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expect that relaxing such couples would tend to lower the energy. However, it 
seems difficult to make any precise statements about this. 

Analytically, it is clear that the twist need not be extremal. It is well known 
that solid single crystals, in contact with liquid crystals, tend to produce a 
definite orientation in the liquid near the interface. In  some cases a t  least, h is 
tangent to a plane interface, on which it is essentially uniform. By using pairs of 
single crystals as wrenches, one might thus produce a range of values of the twist. 

As far as I know, there are no static measurements of stress or couple stress in 
liquid crystals. Until this is done, contact between theory and experiment will 
remain rather tenuous. 

This work was supported by a grant from the U.S. National Science 
Foundation. 
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